

SPEED/POSITION CONTROL SYSTEM THE L290/L291/L292 DC MOTOR

The L290, L291 and L292 together form ^a complete microprocessor-controlled DC motor servopositioning system that is both fast and accurate. This design guide presents a description of the system, detailed function descriptions of each device and application information.

The L290, L291 and L292 are primarily intendedfor use with a DC motor and optical encoder in the configuration shown schematically in figure 1. This system is controlled by a microprocessor, or microcomputer, which determines the optimum speedprofile foreachmovementandpasses appropriate commands to the L291, which contains the system's D/A converter and error amplifiers. the L291 generates a voltage control signal to drive the L292switchmode driver which powers themotor.An optical encoder on the motor shaft provides signals which are processed by the L290 tachometer converter to produce tacho voltage feedback and position feedback signals for the L291 plus distance/direction feedback signals for the control micro.

Figure 1 : The L290, L291 and L292 form a complete DC Motor servopositioning System that connects directly to Microcomputer Chips.

The system operatesin two modes to achieve high speedand accuracy : closed loop speed control and closed loop position control. The combination of these two modes allows the system to travel rapidly towards the target position then stop precisely without ringing.

Initially the system operates in speed control mode. A movement begins when the microcomputer applies a speed demand word to the L291, typically calling for maximum speed. At this instant the motor speed is zero so there is no tacho feedback and the system operates effectivelyin open loop mode (see figure 2). In this condition a high current peak - up to2A – acceleratesthe motorrapidly toensure afast start.

As the motor accelerates the tacho voltage rises and the system operates in closed loop speed mode, moving rapidly forwards the target position. The microcomputer, which is monitoring the optical encoder signals (squared by the L290), reduces the speed demand word gradually when the target position is close. Each time the speed demand word is reduced the motor is braked by the speedcontrol loop.

Finally, when the speed code is zero and the target position extremely close, the micro commands the system to switch to position mode. The motor then stopsrapidly at the desired position andis held in an electronic detent.

OPTICAL ENCODER

The optical encoder used in this system is shown schematically in figure 3. It consist of a rotating slotted disk and a fixed partial disk, also slotted.

Light sources and sensors are mounted so that the encoder generates two quasi-sinusoidal signals with a phase difference of \pm 90°. These signals are referredto as FTA and FTB. The frequencyof these signals indicates the speed of rotation and the rela

tive phase difference indicates the direction of rotation. An example of this type is the Sensor TechnologySTRE 1601, whichhas 200tracks.Similar types are available from a number of manufactures including Sharp and Eleprint.

This encoder generates a third signal, FTF, which consists of one pulse per rotation. FTF is used to find the absolute position at initialization.

Figure 3 : The System operates with an Optical Encoder of the Type shown schematically here. It generates two Signals 90 ° out of Phase plus a one Pulse–per–rotation Signal.

THE L290 TACHOMETER CONVERTER

The L290 tachometer converter processes the three optical encoder signals FTA, FTB, FTF to generate a tachometer voltage, a position signal and feedback signals for the microprocessor. It also generates a reference voltage for the system's D/A converter.

Analytically, the tacho generation function can be expressed as :

$$
TACHO = \frac{dV_{AB}}{dt} \cdot \frac{FTA}{|FTA|} - \frac{dV_{AA}}{dt} \cdot \frac{FTB}{|FTB|}
$$

In the L290 (block diagram, figure 4) this function is implemented by amplifying FTA and FTB in A1 and A2 to produce V_{AA} and V_{AB} . V_{AA} and V_{AB} are differentiated by external RC networks to give the signals V_{MA} and V_{MB} which are phase shifted and proportional in amplitude to the speed of rotation. V_{MA} and VMB are passed to multipliers, the second inputs of which are the sign of the other signal before differentiation.

comparators CS1 and CS2. Finally, the multiplier outputs are summed by A3 to give the tacho signal. Figure 5 shows the waveforms for this process.

This seemingly complex approach has three important advantages.First, since the peaks and nulls of CSA and CSB tend to cancel out, the ripple is very small. Secondly, the ripple frequency is the fourth harmonic of the fundamental so it can be filtered easily without limiting the bandwidth of the speed loop. Finally, it is possible to acquire tacho information muchmore rapidly, giving a goodresponsetime and transient response.

Feedbacksignalsfor the microprocessor, STA, STB and STF, are generatedby squaring FTA, FTB and FTF. STA and STB are used by the micro to keep track of position and STF is used at initialization to find the absolute position.

Position feedback for the L291 is obtained simply from the output of A1.

The L290 also generates a reference voltage for the L291's D/A converter. This reference is derived from VAA and VAB with the function :

$$
V_{ref} \equiv |V_{AA}| + |V_{AB}|
$$

Since the tacho voltage is also derived from VAA and V_{AB} it follows that the system is self compensating and can tolerate variations in input levels, temperature changes and component ageing wifh no deterioration of performance.

Figure 4 : The L290 processes the Encoder Signals, generating a Tacho Voltage and Position Signal for the L291 plus Feedback Signals for the Microprocessor. Additionally, it generates a Reference Voltage for the L291's D/A Converter.

THE L291 D/A CONVERTER AND AMPLIFI-ERS

The L291, shown in figure 6, links the system to the micro and containsthesystem's main error amplifier plus a position amplifier which allows independent adjustment of the characteristics of the position loop.

It contains a five bit D/A converter with switchable polarity that takes its reference from the L290. The polarity, which controls the motor direction, is controlled by the micro using the SIGN input.

The main error amplifier sums the D/A converter output and the tacho signal to produce the motor drive signal ERRV. The position amplifier is provided to allow independent adjustment of the position loop gain characteristics and is switched in/out of circuit to select the mode. The final positionmode is actually 'speed plus position' but since the tacho voltage is almost zero when position mode is selected the effect of the speed loop is negligible.

THE L292 SWITCHMODE MOTOR DRIVER

The L292 can be considered as a power transconductance amplifier - it delivers a motor current proportional to the control voltage (ERRV) from the L291. It drives the motor efficiently in switchmode and incorporates an internal current feedbackloop to ensure that the motor current is always proportional to the input control signal.

The input control signal (see block diagram, figure 7) is first shifted to producea unipolarsignal(the L292 has a single supply) and passed to the error amplifier where it is summed with the current feedback signal. The resulting error signal is used to modulate the switching pulses that drive the output stage.

External sense resistors monitor the load current, feedingback motor current information to the error amplifier via the current sensing amplifier.

The L292 incorporates its own voltage reference and all the functions required for closed loop current control of the motor. Further, it features two enable inputs, one of which is useful to implement a power on inhibit function.

The L292'soutputstage is a bridge configurationcapable of handlingup to 2A at 36V.A full bridge stage was chosen because it allows a supply voltage to the motor effectively twice the voltage allowed if a half bridge is used. A single supply was chosento avoid problems associated with pump-back energy.

In a double supplyconfiguration, such as the example in figure 8 a, current flows for most of the time through D1 and Q1. A certain amount of power is thus taken from one supply and pumped back into the other. Capacitor C1 is charged and its voltage can rise excessively, risking damage to the associated electronics.

By contrast, in a single supply configuration like figure 8b the single supply capacitor participates in both the conduction and recirculation phases. The average current is such that power is always taken from the supply and the problem of an uncontrolled increase in capacitor voltage does not arise.

A problem associated with the system used in the L292 is the danger of simultaneous conduction in both legs of the output bridge which could destroy the device.To overcomethis problem the comparator which drives the final stage consists of two separate comparators (figure 9). Both receive the same V_t , the triangular wave from the oscillator, signal but on opposite inputs.

Figure 7 : The L292 Switchmode Driver receives a Control Voltage from the L291 and delivers a switchmode regulated Current to the Motor.

Figure 8 : A Simple Push Pull Output (a) needs a Split Supply and the Device can be damaged by the Voltage Built up on C1. The L292 has a Bridge Output to avoid these Problems. Only one Supply is needed and the Voltage across the Single Capacitor never rises excessively. Moreover, the Motor can be supplied with a Voltage up to twice the Voltage allowed with a Half Bridge.

The other two inputs are driven by V_{TH} , the error amplifier output,shifted by plus or minus RτI'. This voltage shift, when compared with V_t , results in a delay in switching from one comparator to the other.

Figure 9 : The L292's final Comparator actually consists of two Comparators. This Configuration introduces a Delay to prevent simultaneous Conduction of two Legs.

Consequently there will always be a delay between switching off one leg of the bridge and switching on the other. The delay τ is a function of the integrated resistor Rτ (1.5kΩ) and an external capacitor C17 connected to pin 10 which also fixes the oscillator frequency. The delay is given by :

$\tau = R\tau$ C17

In multiple L292 configurations (in a typewriter, for example, there may be two systems) it is desirable tosynchronisethe switching frequenciesto avoid intermodulation. This can be done using the configuration shown in figure 10.

Figure 10 : Ground Plane switching Noise and Modulation Phenomena are avoided in Multi–L292 Systems by synchronizing the Chopper Rate with this RC Network.

SOFTWARE AND INTERFACING TO THE MICRO

In a typical system the L290/1/2 system is connected to the control microcomputer through ten I/O lines : seven outputs and three inputs.

The outputs are all connected to the L291 D/A converter and consist of the five bit speed demand word, SIGN (which sets the direction) and the speed/position mode select line. Position feedback for the micro comes from the L290 tacho converter and consists of the signals STA, STB (the squared encoder outputs) plus the one-pulse-per rotation signal, STF (figure 11).

To follow the motor position the micro counts the STA pulses to measure the distance travelled and compares the phase of STA and STB to sense the direction. The most convenient way to do this is to connect the STA line to an interrupt input. An interrupt service routine will then sample STB and increment or decrement the position count dependingon the relative phase difference : $+90^\circ$ if STB is high : -90°if STB is low.

It could be argued that the micro doesn't need to sense the direction of the rotation because it controls the direction. In practice, however, it is better to sense the direction to allow for the possibility that the motor may be moved by externally applied forces.

For each movement themicro calculatesthe distance to be travelled and determines the correct direction. It then sets the L291 to velocity feedbackmode, sets the director appropriately and sets the speed demand word for maximum speed (possibly less if the move is very short).

By means of the STA interrupt service routine it follows the changing position, reducing the speed de-

SGS-THOMSON

MICROELECTROMICS

47

mand word to brake the motor when the target position is veryclose. Finally, themicro orderstheL291 to switch to position loop control for the final precise positioning.

When the system is powered up the mechanical subsystem may be in any position so the first step is to initialize it. In applicationswhere the optical encoder never rotates more than one revolution – the daisywheelof a typewriter, forexample – this is simply done by rotating the motor slowly until the STF signal (one-pulse-per-rotation) is detected.

Where the optical encoder rotates more than once the 'one-pulse-per-rotation' signal is not sufficient. An example of this is the carriage positioning servo of a computer printer. In this case the simplest solution is to fit a microswitch on one of the endstops. First the motor is run backwards slowly until the carriage hits the endstop. Then it moves forward until the STF signal is detected. The beauty of this solution is that the endstop microswitch does not need to be positioned accurately.

Figure 13 : P.C. Board and Component layout (1 : 1 scale).

Figure 14.

Figure 14: (continued)

APPLICATION CIRCUITS

The complete circuit is shown in figure 12; a suitable layout for evaluation is given in figure 13. Component values indicated are for a typical system using a Sensor Techonology STRE1601 encoder and a motor with a winding resistance of 5Ω and an inductance of 5mH (this motor is described fully in figure 17). How to calculate values for other motors is explained further on.

Figure 14 explains what each component does and what happens if is varied. Maximum and minimum values are also indicated where appropriate.

ADDING DISCRETE TRANSISTORS FOR HIGHER POWER

In the basic application, the L292 driver delivers 2 A to the motor at 36V. This is fairly impressive for an integrated circuit but not enough for some applications - robots, machine tools etc. The basic system can be expanded to accomodate these applications by adding external power transistors to the L292.

This is a preferable to simply adding a discrete driver stage in place of the L292 because the L292's current control loop is very useful.

Figure 15 showshow four transistors are added to increase the current to 4, 6 or 8A, dependingon the choice of transistor. When coupled to the L290 and L291 this configuration appears to the system as an L292.

The average motor current, I_m , is found from :

$$
I_m = \frac{V_i \ 0.044}{R_x}
$$

Where V_i is the input voltage and R_x is the value of the sense and resistors R7 and R8.

Suitable transistors for this configuration are indicated below :

Figure 15 : For higher power external transistors are added to the L292. This circuit delivers up to 4A, if 2 BDW51A and 2 BDW52A are used it can deliver 8A.

The circuit shown in figure 16 is suitable for motor currents up to 50A at voltages to 150V. Two suplies are used ; 24V for the L292 and LS141 and 150V for the external transistors and motor. This circuit too behaves just like an L292, except for the higher power,andconnectsto the L290and L291asusual.

The motor current is given by :

$$
I_{\rm m} = \frac{V_{\rm in} \times 120 \times 10^{-6} \text{ R}}{R_{\rm S}}
$$

where R_s = R_{s1} = R_{s2} = 12 x 10⁻³ Ω
and 390 Ω < R < 860Ω

This gives a range of transconductance values (Im/Vin) from 3.0A/ $\check{\text{V}}$ (R = 390 Ω) to 8.6A/V (R = 860Ω).

In this circuit the L292 drives two transformers whose secondaries drive the power transistors. The coil ratio of the transformers is 1 : 20. To limit the duty cycle at which the transformers operate from 15% to 85%, two zener diodes are inserted between pin 7 andpin 9of the L292.The LS141op amp supplies current feedback from the transistor bridge to the L292.

DESIGN CONSIDERATIONS

The application circuit of figure 12 will have to be adaptedin most cases to suit the desired performance, motor characteristics, mechanical system characteristics and encodercharacteristics. Essentially this adaptation consists of choosing appropriate values for the ten or so components that determine the characteristics of the L290, L291 and $1292.$

The calculations include :

- . Calculation of maximum speed and acceleration ; useful both for defining the control algorithm and setting the maximum speed.
- Calculation of R8 and R9 to set maximum speed.
- Laplace analysis of system to set C8, R11, R12, R13 and R14. ■ Laplace analysis of system to set C8, R11, R12,
R13 and R14.
■ Laplace analysis of L292 loop to set the sensing
recistors and C12, C12, R15, R16, R17
- resistors and C12, C13, R15, R16, R17.
Calculation of values for C4 and C6 to set max ■ Laplace analysis of L292 loop to set the sensing
resistors and C12, C13, R15, R16, R17.
■ Calculation of values for C4 and C6 to set max
- level of tacho signal.
- Calculation of values for R6 and R7 to set D/A reference current.
- Calculation of R20 to set desired switching frequency.

MAXIMUM ACCELERATION

For a permanent magnet DC motor the acceleration torque is related to the motor current by the expression :

$$
T_a + T_f = K_T I_m
$$

where :

- Im is the motor current
- K_T is the motor torque constant
- T_a is the acceleration torque
- T_f is the total system friction torque

The acceleration torque is related to angular acceleration and system inertia by :

$$
T_a = (J_m + J_{oe} + J_L) a
$$

where :

J_l is the moment of inertia of the load

a is the angularacceleration

In a system of this type the friction torque T_f is normally very small and can be neglected.Therefore, combing these two expressions we can find the angular acceleration from :

$$
a = \frac{K_T}{J_m + J_{oe} + J_L} \cdot I_m
$$

It follows that for a given motor type and control loop the acceleration can only be increased by increasing the motor current, Im.

The characteristicsof atypicalmotor are givenin figure 17. From this table we can see that :

$$
K_T = 4.3N \text{ cm/A} \qquad (6.07 \text{ oz. in/A})
$$

$$
J_m = 65g \text{ cm}^2 \qquad (0.92 \times 10^{-3} \text{ oz. in s}^2)
$$

We also knowthat the maximum current suppliedby the L292 is 2 A and that the moment of inertia of the STRE 1601 optical encoder, J_{oe} , is 0.3 x 10⁻⁴ oz. in. s^2 .

The moment of inertia of the load J_L, is unknown but assume, for example, that $J_{oe} + J_L \approx 2 J_m$. Therefore the maximum angular acceleration is :

$$
a = \frac{6.07 \times 2}{2 \times 0.92 \times 10^{-3}} = 6597.8 \text{rad/s}^2
$$

Figure 17: The characteristics of a typical DC motor

MAXIMUM SPEED

The maximum speed can be found from :

 V_s min = 2 V CEsat + Rs Im + Ke Ω + Rm Im

where :

- $E =$ K_e Ω is the internally generated voltage (EMF)
- K_e is the motor voltage constant

$$
\Omega
$$
 is the rotation speed of the motor.

For example, if $V_{\text{s min}} = 20V$

2
$$
V_{CEsat} + R_s I_m = 5V
$$
 (from L292 dataset)

 $R_m I_m = 10.8V (R_m = 5.4 Ω)$

we obtain :

$$
K_e \Omega (E) = 4.2 V
$$

and

$$
\Omega = \frac{4.2 \text{ V}}{4.5 \text{ mV/min-1}} = 933.3 \text{rpm} = 97.74 \text{ rad/s}
$$

The STRE1601 encoder has 200 tracks so this speed corresponds to :

$$
V = \Omega
$$
 $\frac{200}{60}$ = 3111.1 tracks/s.

The time taken to reach maximum speed from a standingstart can be found from

$$
\Delta t = \frac{\Omega}{a} = \frac{97.74 \text{ rad/s}}{6597.8 \text{ rad/s}^2} = 14.8 \text{ms}
$$

We can also express the acceleration in terms of tracks/ s^2 :

$$
K = \frac{V}{\Delta t} = \frac{3111.1 \text{ tracks/s}^2}{14.8 \text{ ms}} =
$$

 $= 210209.5$ tracks/s²

Therefore the number of tracks necessary to reach the maximum system speed for our example is :

$$
p = \frac{V^2}{2 \text{ K}} = 23 \text{ tracks}
$$

This information is particularly useful for the programmer who writes the control software.

SETTING THE MAXIMUM SPEED

The chosen maximum speed is obtained by setting the values of R6, R7, R8, R9, C4 and C6 (all shown on the application circuit, figure 12). This is how it's done :

The first step is to calculate R6 and R7, which define the DAC current reference.From the L291 datasheet we know that I_{ref}, the DA converter current reference, must be in the range 0.3mA to 1.2mA.

Choosing an I_{ref} of roughly 0.5mA, and knowing that V_{ref} (the L290s reference output) is typically 5V, it follows that :

$$
R6 + R7 = \frac{V_{ref}}{I_{ref}} = 10k\Omega
$$

Therefore we can choose $R6 = R7 = 4.7k\Omega$ (5% tolerance).

Substituting the minimum and maximum values of V_{ref} (from the L290 datasheet) and the resistance variations we cannow check that the variation of Iref in the worst case is acceptable.

$$
I_{ref min} = \frac{V_{ref min}}{(R6 + R7) \text{ max}} = 0.46 \text{ mA}
$$

$$
I_{ref typ} = \frac{V_{ref (typ)}}{4.7 \text{ k} + 4.7 \text{ k}} = 0.53 \text{ mA}
$$

$$
I_{ref max} = \frac{V_{ref max}}{(R6 + R7) \text{ min}} = 0.62 \text{ mA}
$$

These values are within the 0.3mA to 1.2mA limits. Now that the reference current is defined we can calculate values for R8 and R9 which define the tacho current at the summing point.

The full scale output current of pin 12 of the L291 (the D/A converter output) is :

$$
I_o = 1.937 I_{ref}
$$

which is typically 1.02mA.

The worst case output current is when I_{ref} is at a maximum (0.62mA) and the l_{out} error is maximum $(+ 2 \%)$:

$$
I_0 = 0.62 \times 1.937 \times 1.02 = 1.22 \text{mA}
$$

This less than the 1.4 mA maximum value for I_{out} specified in the L291 datasheet.

Assuming that the maximum DC voltage at the TACHO output of the L290 (pin 4) is 7V (this is the tacho voltage generated at the maximum system speed), we can find the sum of R8 and R9 ;

$$
R8 + R9 = \frac{V_{\text{tacho DC}}}{I_{\text{o typ}}} = \frac{7}{1.02} = 6.85 \text{k}\Omega
$$

Therefore we choose R8 = 4.7 k Ω and a 5k Ω trimmer for R9. R9 is used to adjust the maximum speed.

We can now calculate the ripple voltage and maximum tacho voltage :

V_{ripple pp} =
$$
\frac{\pi}{4}
$$
 ($\sqrt{2}$ - 1) V_{tacho DC} \approx 2.3 V_{pp}
V_{tacho max} = $\frac{\pi}{4}$ $\sqrt{2}$ V_{tacho DC} \approx 7.8 V_p

This value is within the voltage swing of the tacho amplifier $(\pm 9V)$; that means the choice of $V_{tacho DC}$ = 7V is correct.

At this point we know the values of R6, R7, R8 and R9. The maximum speed can now be set by choosing values for C4 and C6 which form the differentiation networkson the L290.These values dependon the number of tracks of the optical encoder. For the STRE1601 encoder the capacitor values can be found from figure 18. These curves show how the capacitorvalues is related to frequency(encoderrotation speed) for different tacho voltages and maximum speed. The example values are $V_{tacho DC} = 7V$ and maximum speed = 3111 tracks/sec therefore the value for C4 and C6 is 15nF.

The values of R4 and R5 must be 820Ω to minimize the offsets.

Figure 19.

 K_T : Motor torque constant
 T_a : Acceleration torque

 T_a : Acceleration torque
 T_f : Total system friction

 T_f : Total system friction torque
 T_f : Total moment of inertia (1) : Total moment of inertia $(J = J_{oe} + J_m + J_L)$. Conversion factor that links the motor rotation speed and the TACHO signal.

 K_T : Conversion factor that links the motor position and the Vpos signal.

LAPLACE ANALYSIS OF THE SYSTEM

ⁱtable values for the components R11, R12, R13, R14 and C8 can be found from a Laplaceanalysis of the system. Figure 19 shows a simplified block diagram of the system which will be useful for the analysis.

The analysis is based on the angular speed Ω and on the motor position θ. The motor is represented, to a first approximation,by the current Im and by the acceleration torque, Ta, which drives an inertial load J.

There are two conversion factors, Ksp and Kθ. They link the mechanical parameters (position and speed) with the equivalent feedback signals for the two loops. The values of Ksp and Kθ are determined by the encoder characteristics and the gain parameters of the integrated circuits. The openloop and closed-loop gains are fixed by four
external resistors :
 \blacksquare R_{ref} – fixes the reference current (R6 + R7) external resistors :

- R_{ref} fixes the reference current (R6 + R7)
R_{speed} fixes the speed loop gain (R8 + R9)
-
- R_{ref} fixes the reference current (R6 + R7)
 R_{speed} fixes the speed loop gain (R8 + R9
 R_{pos} controls the position loop gain (R12) ■ R_{speed} – fixes the speed loop gain (R8 + R
■ R_{pos} – controls the position loop gain (R12
■ R_{err} – controls the system loop gain (R13).
-

The stability both of the speed loop and of the speed-positionloop are defined by external components.

The fundamental characteristics of the speed control system can thus be determined by the designer.

 $\tau_{\rm so}$ is the time constant that determines the dominantpole ofthespeedloop andis determinedbyC8, R8 and R9

$$
\tau_{sp} = c8 \quad \frac{R8 \text{ R9}}{R8 + R9}
$$

SETTING THE L292 COMPONENTS

The sensing resistor and feedback loop component values for the L292 can be calculated easily using the following formulae. A detailed Laplace analysis of this block is given on the L292 datasheet.

a) Sense resistors. $RS = R18 = R19$

$$
\frac{I_m}{V_i} = \frac{R2 R4}{R1 R3} \cdot \frac{I}{R_s}
$$

$$
\Rightarrow \qquad Rs = \frac{R2 R4 Vi}{I_m R1 R3}
$$

(These resistors are all inside the L292).

where :

Im is the motor current

 V_i is the input voltage corresponding to I_m .

For example, $Im = 2A$, $Vi = 9.1 V$, resistor values as in figure 7 (L292 internal block diagram)

$$
R_s = \frac{0.044}{I_m} \qquad V_i = 0.2 \ \Omega
$$

b) R17, R15, R16, C12, C13

$$
G_{\text{mo}} = \frac{2 V_{\text{s}}}{R_{\text{m}} V_{\text{R}}}
$$

 $V_s = L292$ supply voltage

 R_m = motor resistance

 V_R = L292 reference voltage

and

$$
\xi = \sqrt{\frac{R4C13}{4R15 C12 G_{\text{mo}} R_s}}
$$

R4 = L292 internal resistor (400Ω)

 $Rs = R18 = R19$

A good choice for ξ is 1/ $\sqrt{2}$. Substituting this value, Gmo and the values of R4 and R_S :

$$
\xi^{2} = \frac{1}{2} = \frac{400 \text{ C13}}{4 \text{R15 C12} \times 0.2}
$$

$$
\Rightarrow \frac{1000 \text{ C13}}{\text{R15 C12}} = 1
$$

$$
\mathbf{f}_{\mathbf{r}}
$$

Also
$$
f_T = \frac{1}{2 \pi R 15 C 12}
$$

Assuming that f_T is 3kHz, another recommended value :

0.9

$$
R15 C12 \equiv 47 \times 10^{-6} s
$$

Therefore we can find C13 :

$$
1000\,C13\cong47\; x\,10{\text -}6
$$

$$
\Rightarrow C13 = 47nF
$$

Since

$$
\frac{L_m}{R_m} = R17 C13
$$

R17 =
$$
\frac{L_m}{C13 R_m}
$$

For the example motor Lm = 5mH, $R_m = 5.4\Omega$ therefore :

$$
R17 = \frac{L_m}{C13 R_m} = 22k\Omega
$$

From R15 C12 \approx 47 x 10-6 s, choosing a value of $R15$; 510 Ω , we have:

$$
C12=82nF
$$

Also,
$$
R16 = R15 = 510Ω
$$
.

DEAD TIME

C17 sets the switching delay of the L292which protects against simultaneous conduction. The delay is :

$$
\tau=R_\tau\,C17
$$

and R_{τ} is an internal 1.5k resistor. The suggested 1.5nFvalue gives aswitching delayofabout2.25µs. This is more than adequate because the transistors have a switch off delay of only 0.5µs.

SWITCHING FREQUENCY

The switching frequency is set by C17 and R20 :

$$
f_{\text{osc}} = \frac{1}{2 \text{ R20 C17}}
$$

R20 must be at least $8.2k\Omega$ and is varied to set the frequency : the value of C17 is imposed by dead time requirements. Typically the frequency will be 15-20kHz.

It should be outside the audio band to reduce noise but not to high or efficiency will be impaired. The maximum recommended value is 30kHz.

CURRENT RIPPLE

To reduce dissipation in themotor and thepeakoutput current the ripple, ∆ Im,shouldbe less than 10% of the maximum current.

Since

$$
\Delta I_m = \frac{V_s}{L_m} \cdot \frac{T}{2}
$$

$$
(\frac{T}{2} = \text{half period oscillator})
$$

and

$$
\Delta I_m = 0.1 I_m \text{ max}
$$

0.1 I_m max =
$$
\frac{V_S}{2 f L_M \text{ min}}
$$

$$
L_M \text{ min} = \frac{5 V_S}{f I_m \text{ max}}
$$

Therefore there is a minimum inductance for the motor which may not always be satisfied. If this is the case, a series inductor should be added and the value is found from :

$$
L_{series} = \frac{5 V_s}{f l_{m max}} - L_M
$$

EFFICIENCY AND POWER DISSIPATION

Neglecting the losses due to switching times and the dissipation due to the motor current, the efficiency of the L292's bridge can be found from :

$$
\eta = I - \frac{\Delta t 1}{\Delta t 1 - \Delta t 2} + \frac{V_{sat}}{V_s} - \frac{\Delta t 1}{\Delta t - \Delta t 2} + \frac{V_{over}}{V_s}
$$

where :

 $V_{over} \cong 2V (2V_{BE} + R_s I_m)$

$$
V_{sat} \cong 4V (2V_{CEsat} + 3 V_{BE})
$$

 Δ t1 = transistor conduction period

 Δ t2 = diode conduction period.

If \triangle t1 $\geq \triangle$ t2 and $V_s = 20V$ we obtain:

$$
\eta = 1 - \frac{4}{20} = 80\%
$$

In practice the efficiency will be slightly lower as a results of dissipation in the signal processing circuit (about 1W at 20V) and the finite switching times (about 1W).

If the power transferred to the motor is 40W, the 80% efficiency implies 10W dissipated in the bridge and a total dissipation of 12W. This gives an actual efficiency of 77%. Since the L292's Multiwatt package can dissipate up to 20W it is possible to handle continuous powers in excess of 60W.

POSITION ACCURACY

The main featureof the system L290, L291,L292 is the accurate positioning of the motor. In this section we will analyse the influence of the offsets of the three ICs on the positioning precision.

When the system is working in position mode, the signal FTA coming from the optical encoder, after suitable amplification, is sent to the summing point of the error amplifier (L291). If there were no offset and no friction, the motor would stop in a position corresponding to the zero crossing of the signal FTA, and then at the exact position required. With a real system the motor stops in a positionwhere FTA has such a value to compensate the offsets and the friction ; as a consequence there is a certain imprecision in the positionning.The block diagram,fig. 20, shows the parts of the 3 ICs involved in the offsets. First we will calculate the amount of the offsets at the input of the IC L292 (point A of fig. 20).

Figure 20.

L290

The offset of the TACHO signal, V2, is the main cause of the imprecision of the positioning. Another offset in L290 is V1, the output offset voltage of A1. The contribution at point A is :

$$
V_{1A} = V1 \cdot \frac{R14}{R11} \cdot \frac{R13}{R12}
$$

$$
V_{2A} = V2 \cdot \frac{R13}{R89}
$$

L291

In this IC there are the following offsets :

V3 = input offset voltage of the position amplifier

 $I1$ = input bias current of the postion amplifier

I2 = output offset current of the D/A converter plus ER. AMP bias current

V4 = input offset voltage of the error amplifier.

Their contribution at point A is:

$$
V_{3A} = V3 \cdot (1 + \frac{R14}{R11}) \cdot \frac{R13}{R12}
$$

$$
VI_{1A} \pm 11 \cdot R14 \frac{R13}{R12}
$$

 $VI_{2A} = I2 \cdot R13$

$$
V_{4A} = V4 \left(1 + \frac{R13}{R127/R89} \right)
$$

L292

Referring to this IC we must consider the input offset voltage V5. Moreover, we call V6 the input voltage that must be applied to the L292 to keep the motor in rotation, i.e. to compensate the dynamic friction. V6 is not an offset voltage, but has the same effects, and for this reason we have to put it together with the offsets.

$$
V_{5A} = V5
$$
 $\frac{I_0}{V_i}$ = Transconductance of L292
 $V_{6A} = V6 = \frac{16}{[\frac{I_0}{V_i}]}$

 $I₆$ = Motor current necessary to compensate the dynamic friction

The total offset voltage referred to point A is given by the sum of all the precedent terms :

 $V_A = V_{1A} + V_{2A} + V_{3A} + V_{1A} + V_{2A} V_{4A} + V_{5A} + V_{6A}$ The amplitude of the signal FTA necessary to compensate the offset VA is :

$$
V_{\text{FTA}} = V_A \cdot \frac{R12}{R13} \cdot \frac{R11}{R14} \cdot \frac{1}{A1}
$$

Calling V_M the maximum value of the signal FTA, the phase error of the system is :

$$
\alpha = \sin^{-1} \qquad \frac{\mathsf{V}_{\text{FTA}}}{\mathsf{V}_{\text{M}}}
$$

If α_c is the phase between two consecutive characters, (it may be equal 360°or multiple of it) the percentage error in the character positioning is :

$$
\varepsilon = \frac{\alpha}{\alpha c} \quad . \quad 100
$$

In these calculations we have not considered how the precision of the signal FTA, coming fromthe optical encoder, influences the positioning error. The percentage value of the pitch accuracy must be added to ε to have the total percentage error in the character positioning. Any DC offset of the mean value of the signal FTA must be multiplied by A1 and addedto V1 to obtain its effect on the error.

NUMERICAL EXAMPLE

In this numerical example we will calculated the precision of the positioning in the worst case, i.e. with all the offsets at the max value. The values of the external components are taken from the application circuit. (fig. 12).

R11 = 22K R12 = 100K R13 = 120K R14 = 15K $R89 = R8 + R9 = 6K$

From the data sheets of the three ICs we can find :

For I_6 we will consider the value $I_6 = 50$ mA

$$
V1A = 55.103 \cdot \frac{15}{22} \cdot \frac{120}{100} = 45 \text{mV}
$$

\n
$$
V_{2A} = 80 \cdot 10 \cdot 3 \cdot \frac{120}{6} = 1.6 \text{V}
$$

\n
$$
V_{3A} = 4.5 \cdot 10^3 (1 + \frac{15}{22}) \cdot \frac{120}{100} = 9.1 \text{mV}
$$

\n
$$
VI_{1A} = 0.3 \cdot 10 \cdot 15 \cdot 10 \cdot \frac{120}{100} = 5.4 \text{mV}
$$

\n
$$
VI_{1A} = 0.4 \cdot 10^6 \cdot 120 \cdot 10^3 = 48 \text{mV}
$$

$$
V_{2A} = 2 \cdot 10 \cdot 3 \cdot (1 + \frac{120}{5.6}) = 44.9 \text{mV}
$$

\n
$$
V_{5A} = 350 \text{mV}
$$

\n
$$
V_{6A} = \frac{50}{205} = 244 \text{mV}
$$

\n
$$
V_{A} = 2.346 \text{V}
$$

\n
$$
V_{\text{FTA}} = 2.329 \cdot \frac{1}{120} \cdot \frac{22}{15} \cdot \frac{1}{12.6} = 0.228 \text{V}
$$

\n
$$
\alpha = \sin_{11} \frac{0.226}{0.4} = 35^{\circ}
$$

If we consider an optical encoderwith 200 tracks/turn and a daisy wheel with 100 characters, the phase between two consecutive characters is $ac = 720^\circ$, and then the maximum percentage error we can have is.

0.4

$$
\varepsilon = \frac{35}{720} \cdot 100 \approx 4.8\%
$$

Fromthis numerical example we cansee that themain contribution to the positioning error is given by the offset of the TACHO signal (V_{2A}) , other big contributions are given by the input offset voltage of L292 (V_{5A}) and by the voltagenecessaryto compensatethe dynamic friction of the moto (V_{6A}). This last term is only determined by the motor and can also have greater values.

The error we have calculated is the maximum possible and it happens when all the offsets have the max value with the same sign, i.e. with a probability givenby the product of the singleprobabilities. Consideringas anexample everyoffsethasaprobability of 1% to assume the max value, the probability the error assumes the max value is :

$$
P = (10-2) = 10-14
$$

Figure 21.

SPEED ACCURACY

If we consider the complete system with L290-L291-L292 driving a DC MOTOR with optical encoder, we can note the speed of the motor is not a linear function of the speed digital code appied to L291. The diagram of fig. 21 shows this function and it is evident that the speed increases more than a linear function, i.e. if the speed code doubles, the speed of the motor becomes more than the double. The cause of this non linearity is the differentiator network R4 C4 and R5 C6 (see fig. 22) that has not an ideal behaviour at every frequency.

Figure 22.

1) $V_{MA} = V_{AA} \sin \varphi$

 $\omega = \tan^{-1} \qquad \omega$ R5 C6 $\omega = 2 \pi f$

2) $V_{MA} = V_{AA} \sin t$ g-1 ω R5 C6

 $f = frequency of the signal $FTA$$

This last relation gives the amplitude of the signal V_{MA} ; it is evident there is not a linear function between VMA and ω, like V_{MA} = Kω and the difference is greater if the product ω R5 C6 doesn't respect the disequation ω R5 C6 \ll 1., i.e. at high frequencies. **Figure 23.**

The phase angle between V_{MA} and V_{AA} should be 90° and then $\phi = 0$, in our case ϕ increases with the frequency according to the equation $\varphi = \text{tg-1}$ w R5C6, andinflencesthe amplitude of the outputsignalTACHO. Infig. 23are shown the waveforms that contribute to generate the TACHO signal. A and B are the signals V_{AA} and V_{AB} in phase with the input signals FTA and FTB. C and D are the signals V_{MA} and V_{MB} : the continue line indicate the ideal case, in fact the phase between V_{MA} and V_{AA} is 90 $^{\circ}$; the dotted line is referred to the real case in which the phase is lower than 90°. By adding the two signals shown in E we obtain the TACHO signal, whose expression is :

 $V_{TACHO} = V_{MB}$. sign V_{AA} - V_{MA} . sign V_{AB} .

The signals in E are reffered to the ideal case, the ones in F to the real case. It is possible to demonstrate the mean value of the TACHO signal in the real case is lower than the one we could have with an ideal differentiatornetwork and this explainswhy in fig. 21 the speed of the motor increases more than a linear funciton. The mean value of the waveforms F is (fig. 24).

$$
3) V_m = \int \frac{\pi - \varphi}{-\varphi} K1 \sin \alpha \, d\alpha = \frac{2K1}{\pi} \cos \varphi
$$

Since the waveforms E are half sinewaves, the mean value is

4) V'm =
$$
\frac{2 \text{ K1}}{\pi}
$$

We can conclude that two causes contribute to give a TACHO signal lower than the theoretical one, both due to differentiatornetwork :

a) the amplitude of the signal V_{MA} is lower than V_{MA} $=$ K ω and we can call ε 1 the relative percentage error.

$$
\varepsilon 1 = \frac{\sin \text{tg}^1 \omega \text{ R5 C6} - \omega \text{ R5 C6}}{\omega \text{ R5 C6}} \cdot 100
$$

b) the mean value of the signals V_{MA} . sign V_{AB} and V_{MB} . sign V_{AA} is lower than the theoretical one because there is a shift in the phase of the signals V_{MA} and V_{MB} . The relative percentage error only due to the shift of the phase is

 ε 2 = (cos φ – 1) . 100 φ = tg-1 ω R5 C6

The total percentage decrease of the TACHO signal is given with a good approximation by the sum of ε 1 and ε2.

Example :

Consider :

$$
f = 3000 Hz
$$
 corresponding to
\n
$$
n = \frac{3000}{200} \cdot 60 = \frac{900 \text{ rpm of the motor if}}{200 \text{ are the tracks/tum}}
$$

\nε1 ≈ −2.6% with R5 = 820Ω

 $C6 = 15nF$

ε2 \approx - 2.6%

 $\epsilon 3 \approx \epsilon 1 + \epsilon 2 \approx -5.2\%$

From the diagram of fig. 21 we note that at a speed of 900 rpm corresponds a theoretical speed of 855rpmwith a percentagedifferenceof about 5.2%.

SPEED ACCURACY DUE TO THE D/A CONVERTER

To analyse the influence of the DAC precision on the speed accuracy we will refer to the following (fig. 25).

Figure 25.

The value of the output current of the DAC I_0 depends on Iref and on the digital code defined by the inputs SC1-SC5, while its direction depends on the value of the SIGN input, the max theoretical value of I₀, obtained with SC1-SC5 low is:

$$
I_{OM} = \pm \frac{31}{16} I_{ref}
$$

The motor will run at a speed corresponding to the following value of the TACHO signal :

$$
V_{TACHO} = - I_{OM} \cdot R89 = \pm \frac{31}{16} I_{ref} \cdot R89
$$

This last relation is true if we don't consider the motor friction and the offsets. Consider now the possible friction and the offsets. Consider now the possible spreads we can have in the motor speed due to the DAC. If we call I_{OM1} the value of the max output current I_o corresponding to the SIGN LOW and I_{OM2} the one corresponding to the SIGN HIGH, the percentageerror we havein themax speedfrom the positive to the negative value is :

$$
\varepsilon = \frac{I_{OM1} + I_{OM2}}{I_{OM}} \cdot 100
$$

Note that we have consider the sum of I_{OM1} and I_{OM2} becausetheyhave oppositesigns. This kind oferror is principally due to a different gain of the DAC between the two conditions of the SIGN LOW and HIGH. An equal difference of I_{OM1} and I_{OM2} , from I_{OM} $(|I_{OM1}| - |I_{OM}| = |I_{OM2}| - |I_{OM}|)$ doesn't constitute a speed error because this shift from the theoretical value can be compensated by adjusting the resistor R89 that is formed by a fixed resistor in series with a potentiometer.

With the guaranteedvalues on the L291 data sheet we can calculate for ε4 the max value :

$$
\varepsilon 4 = \frac{21 \,\mu\text{A}}{1.4 \,\text{mA}} \cdot 100 = 1.5 \,\%
$$

Another characteristicof a D/AC is the linearity, that in our case is better than \pm 1/2LSB. This value is sufficient to guarantee the monotonicity of I_o , and then of the speed of the motor, as a function of the input digital code. The precision of \pm 1/2 LSB implies a spread of the speed at every configuration of the input code of \pm 1.61% referred to the maximum speed. The max percentage error we can have is then greater at low level speed $(\pm 50\%$ at min speed) and hasits minimum value at the maximum speed (1.61%).

ACCURACY DUE TO THE ENCODER

The amplitude of the signals FTA and FTB determines the value of the TACHO signal. This amplitude must be constant on the whole range of the frequency, otherwise it is not possible to have a linear function between the TACHO signal and the frequency. The spread of the amplitudes of the two signalsFTA and FTB between several encoder can be compensated by adjusting the potentiometer R9 (see fig. 12). The phase between the two signals shouldbe 90° . If there is a constant difference from this value, a constant factor reduction of the TACHO signal results that can be compensated with the potentiometerR9. If the difference from 90°is random, also the reduction of the TACHO signal is random in the same way, and by means of R9 it is possible to compensate only the mean value of that reduction.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

1995 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

